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Velocity Kinematics

Figure 1: Link frame assignment.

Figure m illustrates an RRR manipulator with assigned link frames. Listing m
provides MATLAB code to derive the transformation matrices from the DH
parameters shown in Table m We will derive *J(0©) through three different
methods: velocity propagation from the base to the tip, static force propa-
gation from the tip to the base, and direct differentiation of the kinematic
equations.
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Table 1: DH Parameters.

syms thl th2 th3 L1 L2 L3

DH = [
0 0 0 thil;
pi/2 L1 0 th2;
0 L2 0 th3;
0 L3 0 0
1g

T link_transform(DH);

N size (T, 3);

Listing 1: Transform matrices. Source code for 1ink_transform is provided
in Listing B (Supplementary Material).

1 Velocity propagation from base to tip
To compute the velocity propagation through the manipulator, we start by

defining the conditions at the base:
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The velocity propagation from frame ¢ to ¢ + 1 is defined by:
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These equations are iteratively applied from the base to the end-effector.
Finally, the Jacobian, *J(©), maps the joint velocities into the Cartesian
velocity of the end-effector:
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Thus, the Jacobian matrix J(0) is obtained as follows:
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The MATLAB code for this process is provided in Listing E

syms dthl dth2 dth3
dth = [dthl; dth2; dth3; 0];

v = [0; 0; 0]; w= [0; O; 0]; Z = [0; O; 11;

for i = 1:N
R = T(1:3, 1:3, i)."';
P = T(1:3, 4, i);
v = R * (v + cross(w, P));
w =R *x w + dth(i) * Z;
end
J1 = jacobian(v, dth(1:3));
J1 = simplify(J1)

Listing 2: Velocity propagation from base to tip.

2 Static force propagation from tip to base

To compute the static force propagation through the manipulator, we start
by defining the conditions at the tip:

4f4:[fx fy fz}T (6)
ny=1[0 0 0]" (7)




The static force propagation from frame ¢ + 1 to ¢ is defined by:

ifi = §+1Ri+1fi+1 (8)
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These equations are iteratively applied from the end-effector to the base.
Finally, the transpose of the Jacobian matrix, J7(©), maps the Cartesian
forces acting at the end-effector into the equivalent joint torques:

r=470)*, (11)

Thus, the Jacobian matrix 4.J(©) is obtained as follows:
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The MATLAB code for this process is provided in Listing B

syms fx fy fz
f = [fx; fy; fz];

t = sym(zeros(N, 1)); n = [0; 0; 0]; Z = [0; O; 11;

for i = N:-1:1
R = T(1:3, 1:3, 1i);
P =T(1:3, 4, i);
f =R *x £f;
n =R *n + cross(P, f);
t(i) = n.' * Z;
end
J2 = jacobian(t(N-2:N), [fx; fy; fz]).';
J2 = simplify(J2)

Listing 3: Static force propagation from tip to base.




3 Direct differentiation of kinematic equations

To derive the Jacobian through direct differentiation, we start by calculating
the partial derivatives of the end-effector’s position with respect to the joint
angles:
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This results in the Jacobian expressed in the base frame. To transform this
Jacobian into the end-effector frame, we apply the rotation matrix:

1J(©) =R J(0) (13)

Thus, the Jacobian matrix J(©) is obtained as follows:
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The MATLAB code for this process is provided in Listing @

R = eye(3); P = [0; 0; 0; 1];

for i = N:-1:1
R =R * T(1:3, 1:3, i)."';
P="T(C, :, i) * P;
end
J3 R * jacobian(P(1:3), [thl th2 th3]);

J3 simplify (J3)

Listing 4: Direct differentiation of kinematic equations.



Supplementary Material

function T = link_transform(DH)
N = size(DH, 1);
T = sym(zeros (4, 4, N));

for i = 1:N
screw_X = [
1 0 0 DH(i,2);
0 cos(DH(i,1)) -sin(DH(i,1)) O;
0 sin(DH(i,1)) cos(DH(i,1)) O0;

0001
i
screw_Z = [

cos(DH(i,4)) -sin(DH(i,4)) 0 O;
sin(DH(i,4)) cos(DH(i,4)) 0 0O;
0 0 1 DH(i,3);

0001

1;

T(:, :, i) = screw_X * screw_Z;
end
end

Listing 5: Derives transformation matrices using DH parameters.

clear; clc;

syms thl th2 th3 L1 L2 L3

DH = [
0 0 0 thil;
pi/2 L1 0 th2;
0 L2 0 th3;
0 L3 0 0
1;

T = link_transform(DH) ;

N

size(T, 3);
%% Velocity Propagation from Base to Tip
syms dthl dth2 dth3

dth = [dthl; dth2; dth3; 0];




for

end
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end

J2
J2

hh

R =

for

end

J3
J3

(0; 0; 0]; w = [0; O0; 0]; Z = [0; O; 1];
i = 1:N

R =T(1:3, 1:3, i)."';

P =T(1:3, 4, i);

v =R * (v + cross(w, P));

w =R *x w + dth(i) * Z;

jacobian(v, dth(1:3));
simplify (J1)

Static Force Propagation from Tip to Base
s fx fy fz

[fx; fy; fz];

sym(zeros(N, 1)); n = [0; O0; 0]; Zz = [0; O; 1];

N:-1:1
= T(1:3,
T(1:3,
=R x f;
=R * n + cross(P,
(i) = n.' * Z;

1:3,
45

i)
i);

£);

ct B H U T
]

jacobian(t(N-2:N), [fx; fz]).';

simplify (J2)

fy;

Direct Differentiation of the Kinematic Equations

eye(3); P = [0; 0; 0; 11;
i=N:-1:1

R =R * T(1:3, 1:3, 1i)."';
P="T(C, :, 1) * P;

R * jacobian(P(1:3),
simplify (J3)

[thl th2 th3]);

Listing 6: Complete source code.
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